Actualidad

It is not postharvest, but ? Sunscreens may affect the sea life

Sunscreens have been shown to give the most effective protection for human skin from ultraviolet (UV) radiation. Chemicals from sunscreens (i.e., UV filters) accumulate in the sea and have toxic effects on marine organisms. In this report, we demonstrate that photoexcitation of inorganic UV filters (i.e., TiO2 and ZnO nanoparticles) under solar radiation produces significant amounts of hydrogen peroxide (H2O2), a strong oxidizing agent that generates

24 November, 2020

Redaccion

Sunscreens have been shown to give the most effective protection for human skin from ultraviolet (UV) radiation. Chemicals from sunscreens (i.e., UV filters) accumulate in the sea and have toxic effects on marine organisms. In this report, we demonstrate that photoexcitation of inorganic UV filters (i.e., TiO2 and ZnO nanoparticles) under solar radiation produces significant amounts of hydrogen peroxide (H2O2), a strong oxidizing agent that generates high levels of stress on marine phytoplankton. Our results indicate that the inorganic oxide nanoparticle content in 1 g of commercial sunscreen produces rates of H2O2 in seawater of up to 463 nM/h, directly affecting the growth of phytoplankton. Conservative estimates for a Mediterranean beach reveal that tourism activities during a summer day may release on the order of 4 kg of TiO2 nanoparticles to the water and produce an increment in the concentration of H2O2 of 270 nM/day. Our results, together with the data provided by tourism records in the Mediterranean, point to TiO2 nanoparticles as the major oxidizing agent entering coastal waters, with direct ecological consequences on the ecosystem. The authors of the study are David S?nchez-Quiles and Antonio Tovar-S?nchez. ? More informationSunscreens as a Source of Hydrogen Peroxide Production in Coastal Waters ?
Plan de Recuperación, Transformación y Resiliencia Financiado por la Unión Europea